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Inverse Scattering Problem
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From a knowledge of us on Σ, for several interrogating waves ui and
possibly for a range of frequencies we can formulate two problems:

Reconstruct everything.
Weak scattering approximation, optimization techniques

Obtain partial information such as the support D and estimates
on the material properties.
Qualitative approach

D. COLTON AND R. KRESS (2019), Inverse Acoustic and Electromagnetic Scattering Theory, 4th Edition,
Springer



Inverse Scattering

Popular approaches to the inverse scattering problem for
acoustic/electromagnetic/elastic waves in the frequency domain:

1 Linearization: Ignores multiple scattering and hence model may
be incorrect.

2 Nonlinear Optimization: Typically reconstruct all the unknowns.
Possibly little data, but good a priori information. Convergence of
Newton’s Method for inverse scattering problem is not fully
established. In general they do not work for anisotropic media.

3 Data Driven Models: Being developed.

4 Qualitative Method: No a priori information, but needs a lot of
data. Provides partial information about the scatterer. It is
mathematically rigorous with correct model.

A. KIRSCH AND N. GRINBERG (2008), The Factorization Method for Inverse Problems, Oxford University.

F. CAKONI AND D. COLTON AND H. HADDAR (2016), Inverse Scattering Theory and Transmission
Eigenvalues, CBMS-NSF, SIAM Publication.



Scattering by an Inhomogeneous Media
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∆us + k2us = 0 in R3 \ D
∇ · A∇u + k2nu = 0 in D

u = us + ui on ∂D
ν · A∇u = ν · ∇(us + ui ) on ∂D

lim
r→∞

r
(
∂us

∂r
− ikus

)
= 0

k is the wave number which is proportional to the frequency ω

ui is the incident wave solving ∆ui + k2ui = 0 in R3 (except for
possibly one point) and us is the scattered wave.

∇ · A∇us + k2nus = ∇ · (I − A)∇ui + k2(1− n)ui in R3

where A = I and n = 1 outside D.



Eigenvalues and Inverse Scattering Theory

Decode nonlinear information on inhomogenous media, i.e. on D, A
and n, from the properties of the linear scattering operator.

Fundamental properties of this operator give rise to scattering
resonances and transmission eigenvalues

Resonances constitute a fundamental part of scattering theory.
Their study has led to beautiful mathematics, has shed light into
deeper understanding of direct and inverse scattering
phenomena.

R.B. MELROSE (1995), Geometric Scattering Theory, Cambridge University Press.

S. DYATLOV - M. ZWORSKI (2019), Mathematical Theory of Scattering Resonances, AMS.

Because the resonances are complex, it is difficult to determine
them from scattering data unless they are near the real axis.

Transmission eigenvalues are an alternative choice. They also
play an intrinsic role to the scattering phenomenon.



Resonances and TEs for Spherically Stratified Media
Consider scattering of v = j`(k |x |)Y`(x̂), by a ball B1 and n(r), A = I .

us(x) :=
C(k ; n, `)
W (k ; n, `)

h(1)
` (k |x |)Y`(x̂), u∞(x) :=

C(k ; n, `)
W (k ; n, `)

1
k

Y`(x̂)

C(k ; n, `) = Det
(

y`(1; k ,n) j`(k)
y ′`(1; k ,n) kj ′`(k)

)

W (k ; n, `) = Det

(
y`(1; k ,n) h(1)

` (k)

y ′`(1; k ,n) kh(1)′

` (k)

)
with y`(r ; k ,n) the solution (regular at r = 0) of

y ′′ +
2
r

+

(
k2n(r)− `(`+ 1)

r2

)
y = 0.

k such that W (k ; n, `) = 0 is a scattering pole. Such k are
complex with =(k) < 0.

k such that C(k ; n, `) = 0 is a transmission eigenvalue
(v = j`(k |x |)Y`(x̂) does not scatter). Such k can be real.



TE and Non-Scattering Frequencies

Question: Is there an incident field ui that does not scatter?

If yes, k is such that v := ui |D and u are solutions to the transmission
eigenvalue problem

∆v + k2v = 0 in D
∇ · A∇u + k2nu = 0 in D

u = v on ∂D
ν · A∇u = ν · ∇v on ∂D

Transmission Eigenvalues

Values of k ∈ C for which the transmission eigenvalue problem has a
non trivial solution are called transmission eigenvalues



TE and Non-Scattering Frequencies

If k is a transmission eigenvalue and the eigenfunction v that solves
∆v + k2v = 0 in D can be extended outside D as a solution ṽ of the
same equation, then the scattered field due to ṽ as an incident wave
is identically zero.

In general such an extension of v does not exist (corners!).

BLÅSTEN-PÄIVÄRINTA-SYLVESTER, Comm. Math. Phys. (2013)

CAKONI-XIAO, Communications in PDEs (to appear)

Important Fact: Superposition of plane waves or point sources with
source outside D, are dense in{

v ∈ H1(D) : ∆v + k2v = 0 in D
}
.

Thus at a transmission eigenvalue it is possible to superimpose plane
waves to produce an arbitrarily small scattered field.



Far Field Operator & Scattering Operator

Take incident ui := eikx·d̂

The scattered field us has the asymptotic behavior

us(x ; d̂ , k) =
eik|x|

|x |

{
u∞(x̂ ; d̂ , k) + O

(
1
|x |

)}
as |x | → ∞

uniformly in x̂ = x/|x | ∈ S2. u∞ is called the far field pattern.

We define the far field operator Fk : L2(S2)→ L2(S2) by

(Fk g)(x̂) :=

∫
S2

u∞(x̂ ; d̂ , k)g(d̂)ds.

Fk is related to the scattering operator Sk : L2(S2)→ L2(S2) by

Sk = I +
ik
2π

Fk



Far Field Operator

Consider the incident wave-to-far field mapping

G : v ∈
{

H1(D) : ∆v + k2v = 0
}
7→ u∞(x̂) ∈ L2(S2)

where u∞ is the far field pattern of the scattered field us satisfying

∇ · A∇us + k2nus = ∇ · (I − A)∇v + k2(1− n)v in R3

Fk g = G(vg)

where the incident wave is a Herglotz wave function

vg(x) :=

∫
S2

eikx·d̂g(d̂)ds.



Injectivity of the Far Field Operator

Theorem

G : L2(D)→ L2(S2) is not injective if and only if k is a transmission
eigenvalue. In this case

Gv = 0

where v is part of the eigenfunction solving the Helmholtz equation.

Theorem

Fk : L2(S2)→ L2(S2) is not injective if and only if

1 k is a transmission eigenvalue and

2 the component v that satisfies ∆v + k2v = 0 of the
corresponding eigenfunction is a Herglotz wave function

vg(x) :=

∫
S2

eikx·d̂g(d̂)ds.



The Range of Far Field Operator

Is e−ik x̂·z ∈ Range(Fk )?

Note that e−ik x̂·z is the far field pattern of Φ(x , z) = eik|x−z|

4π|x−z| .

e−ik x̂·z ∈ Range(G) ⇐⇒ z ∈ D

In particular G(vz) = e−ik x̂·z where

∆vz + k2vz = 0 in D
∇ · A∇uz + k2nuz = 0 in D

uz − vz = Φ(·, z) on ∂D
ν · A∇uz − ν · ∇vz = ν · ∇Φ(·, z) on ∂D



Generalized linear sampling method

For α > 0, consider Jα(g) = αB(g) + ‖Fk g − ϕ‖2
L2(S2)

where B : L2(S2)→ R+ is a functional (not necessarily convex).

Let gz
α be a minimizing sequence of Jα such that

Jα(gz
α) ≤ inf

g∈L2(S2)
Jα(g) + o(α).

Then
ϕ ∈ Range(G)⇐⇒ lim

α→0
B(gα) <∞

Key in the choice of B(g) are

B(g) must be bounded if and only if ‖vg |D‖H1(D) is bounded.

B(g) must be expressed in terms of Fk (i.e. the data).

AUDIBERT - HADDAR (2015) Ph.D Thesis, Ecole Polytechnique.



Generalized Linear Sampling Method

Main assumption: A, n are such that the interior transmission problem
is Fredholm of index one, i.e. a compact perturbation of an invertible
operator.

Fk = H∗TH, Hg := vg |D

A possible choice of B is

F#
k := |<(Fk )|+ |=(Fk )|

hence using the functional

Jα(g) = α
∣∣∣(F#

k g,g
)∣∣∣+

∥∥∥Fk g − e−ik x̂·z
∥∥∥2

L2(S2)

A. KIRSCH AND N. GRINBERG (2008), The Factorization Method for Inverse Problems, Oxford University.



The Determination of the Support D

Theorem
Assume k > 0 is not a transmission eigenvalue. Then

z ∈ R3 \ D ⇐⇒ lim
α→0

∣∣∣(F#
k gz

α,gz
α

)∣∣∣ = +∞

∣∣∣(F#
k gz

α,gz
α

)∣∣∣ is an indicator function for the support D

F. CAKONI AND D. COLTON AND H. HADDAR (2016), Inverse Scattering Theory and Transmission
Eigenvalues, CBMS-NSF, SIAM Publication.



Determination of Real Transmission Eigenvalues

Theorem

k > 0 is a transmission eigenvalue

⇐⇒

lim
α→0

∣∣∣(F#
k gz

α,gz
α

)∣∣∣ = +∞ for all z ∈ Bδ ⊂ D

∣∣∣(F#
k gz

α,gz
α

)∣∣∣ determines the real transmission eigenvalues

F. CAKONI AND D. COLTON AND H. HADDAR (2016), Inverse Scattering Theory and Transmission
Eigenvalues, CBMS-NSF, SIAM Publication.



Qualitative Methods

Without any a priori information on the constitutive material properties
or the topology of scatterers

A knowledge of the far field operator

(Fk g)(x̂) :=

∫
S0

u∞(x̂ ; d̂ , k)g(d̂)ds

x̂ , d̂ ∈ S0 ⊂ S, z ∈ R3, k ∈ [k0, k1], determines:

The support D

Real transmission eigenvalues



Shape Reconstruction

F. CAKONI AND D. COLTON AND P. MONK (2011), The Linear Sampling Method in Inverse Electromagnetic
Scattering, CBMS-NSF, SIAM Publication.



Examples of Reconstruction

D := B1, A = I,n = 16, k is not a TE



Examples of Reconstruction

D := B1, A = I,n = 16, k is a TE



Computation of Real Transmission Eigenvalues
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The peaks correspond to the computed transmission eigenvalues.
Red dots indicate exact transmission eigenvalues.



Transmission Eigenvalue Problem

Having determined the support D and (a few) transmission
eigenvalues, the aim is to get some information about the constitutive
parameters A and n.

For this we appeal to the transmission eigenvalue problem:

∆v + k2v = 0 in D
∇ · A∇w + k2nw = 0 in D

w = v on ∂D
ν · A∇w = ν · ∇v on ∂D

∫
D

A∇w · ∇w ′ dx −
∫
D

∇v · ∇v ′ dx − k2
∫
D

nw w ′ dx + k2
∫
D

v v ′ dx = 0

Non-elliptic in the sense of Agmon-Douglis-Nirenberg!



State of the Art Results on TEP
The transmission eigenvalue problem is non-self adjoint!

When =(A) < 0 or/and =(n) > 0 all transmission eigenvalues
are complex.

Spectral analysis and completeness results under the
assumptions A, n are C1 only near ∂D (otherwise L∞),
real-valued, and satisfy the complementing boundary conditions,

〈Aν, ν〉〈Aξ, ξ〉 − 〈Aν, ξ〉2 6= 1 on ∂D〈
Aν, ν

〉
n 6= 1 on ∂D

for all ξ · ν = 0 where ν is the normal vector to ∂D

Location of transmission eigenvalues in the complex plane for A
scalar function, and A, n both C∞(D) in addition to above
condition.

CAKONI-GINTIDES-HADDAR (2010), CAKONI-KIRSCH (2010), BONNET-BEN DHIA-CHESNEL-HADDAR (2011),

SYLVESTER (2012), LEUNG-COLTON (2012-13-15), HM. NGUYEN-QH. NGUYEN (2016), ROBIANNO (2013),

LAKSHTANOV-VAINBERG (2015-16), VODEV (2017-18), HM. NGUYEN (2020) ETC....



Monotonicity property of TEs

If n − 1, A− I have the same sign in D then there exists a sequence
of real eigenvalues kj (A,n,D) accumulating to +∞ and they satisfy
monotonicity properties it terms of A, n and D. For example for
B2 ⊂ D ⊂ B1

If n > 1 and A = I in D

kj (nmax ,B1) ≤ kj (nmax ,D) ≤ kj (n(x),D) ≤ kj (nmin,D) ≤ kj (nmin,B2)

If A < 1 and n = I in D

kj (amin,B1) ≤ kj (amin,D) ≤ kj (A(x),D) ≤ kj (amax ,D) ≤ kj (amax ,B2)

CAKONI-GINTIDES-HADDAR (2010), CAKONI-KIRSCH (2010)



Numerical Example: Anisotropic Media

For a given (unknown) anisotropic media A, we find an isotropic
media a0 that has the first transmission eigenvalue the same as the
(measured) first transmission eigenvalue for anisotropic media.
Monotonicity gives that this a0 is between a∗ and a∗.

We consider D to be the unit square [−1/2, 1/2]× [−1/2, 1/2], n = 1

A1 =

(
2 0
0 8

)
A2 =

(
6 0
0 8

)
A2r =

(
7.4136 −0.9069
−0.9069 6.5834

)

Matrix Eigenvalues a∗, a∗ Predicted a0

Aiso 4, 4 4.032
A1 2, 8 5.319
A2 6, 8 7.407
A2r 6, 8 6.896

F. CAKONI, D. COLTON, P. MONK, J. SUN (2010) The inverse electromagnetic scattering problem for
anisotropic media, Inverse Problems.



TE and Non-desctructive Testing

F. CAKONI, I. HARRIS, AND J. SUN (2014) Transmission eigenvalues and non-destructive testing of
anisotropic magnetic materials with voids, Inverse Problems.



Cons of Using Transmission Eigenvalues

Drawbacks of using the transmission eigenvalues as target signatures

The method of transmission eigenvalues does not apply to
absorbing or dispersive media.

Multifrequency data is needed. The first transmission eigenvalue
is determined by the material properties of the scatterer, i.e. one
can not choose the range of interrogating frequencies.

It is possible to modify the scattering data in such away that the same
analysis yields a new eigenvalue problem whose eigenvalue
parameter is not related to the interrogating frequency

utotal = uscattered + uincident

utotal is the physical field, thus change uscattered by changing uincident .



Modified Far-Field Operator

Let hs,λ be the scattered field due a plane wave by an artificial
scatterer depending on λ ∈ C, and let hλ∞ be its far field. Define

Fg = Fk g − Fλg :=

∫
S2

[
u∞(· ; d̂)− hλ∞(· ; d̂)

]
g(d̂)ds

Fk is known from measurements.

Fλ is computed (can be precomputed).

If the above analysis on Fk is now performed to the modified far field
operator F , a new eigenvalue problem appears instead of the
transmission eigenvalue problem.



Eigenvalues and Inverse Scattering Theory

Example (Steklov Eigenvalues)

Fλ : L2(S2)→ L2(S2) is defined by

(Fλ)g =

∫
S

hλ∞(x̂ ,d)g(d) ds(d)

where hλ∞ is the far field pattern of the scattered field hs := hs,λ

∆hs + k2hs = 0 in R3 \ Db

h = hs + eik d̂·x

∂h
∂ν

+ λh = 0 in ∂Db

lim
r→∞

r
(
∂hs

∂r
− ikhs

)
= 0 r = |x |

and Db is such that D ⊆ Db.



Steklov Eigenvalues

The question if there is a g ∈ L2(S2) s.th. Fg = Fk g − Fλg = 0 yield

∇ · A∇u + k2nu = 0 in Db

ν · A∇u + λu = 0 on ∂Db.

with A = I, n = 1 in Db \ D. If k is fixed then this is the Steklov
eigenvalue problem for λ

Theorem (Audibert-Cakoni-Haddar, IP 2017)

λ ∈ C is a Steklov eigenvalue ⇐⇒

lim
α→0
|(Fλgz

α,gz
α)| = +∞ for all z ∈ Bδ ⊂ Db

where gz
α is a minimizing sequence of

Jα(g) = α |(Fλg,g)|+ ‖Fg − e−ik x̂·z‖2
L2(S2)



Modified Far Field Operator

Example (New eigenvalue problems)

Fλ : L2(S)→ L2(S) is defined by

Fλg =

∫
S

hλ∞(x̂ ,d)g(d) ds(d)

where hλ∞ is the far field pattern of the scattered field hs := hs,λ

∆hs + k2hs = 0 in R3 \ Db

a∆h + k2λh = 0 in Db

h = hs + eik d̂·x on ∂Db

a
∂h
∂ν

=
∂(hs + eik d̂·x )

∂ν
on ∂Db

lim
r→∞

r
(
∂hs

∂r
− ikhs

)
= 0 r = |x |

The chosen parameter a is a fixed. The only requirement is that the
above scattering problem is well-posed.



Eigenvalues and Inverse Scattering Theory

The question if there is a g ∈ L2(S2) s.th. Fg = Fg − Fλg = 0 yield
the following modified transmission eigenvalue problems

∇ · A∇u + k2nu = 0 in Db

a∆v + k2λv = 0 in Db

u = v on ∂Db

ν · A∇u = ν · a∇v on ∂Db

with A = I, n = 1 in Db \ D. With fixed a > 0 this modification was first
introduced in

S. COGAR, D. COLTON, S. MENG AND P. MONK (2017) The modified transmission eigenvalue problem in
inverse scattering, Inverse Problems.



Eigenvalues and Inverse Scattering Theory

∇ · A∇u + k2nu = 0 in Db

a∆v + k2λv = 0 in Db

u = v on ∂Db

ν · A∇u = ν · a∇v on ∂Db

The eigenvalues λ ∈ C can be computed using data at fixed
frequency k by a similar approach as the other type of eigenvalues.

Negative Refractive Index (Audibert-Cakoni-Haddar 2017,
Cakoni-Levitin 2020)

Fix an interrogating frequency k , and choose −1 6= a < 0.
If A and n are real valued, this is an eigenvalue problem for a
selfadjoint compact operator (not necessary sign-definite) with
eigen-parameter λ.



Steklov Eigenvalues

D unit disk, k = 1, n(x) changes form 4 to 4.1, 51 direction all around.
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Sensitivity of Eigenvalues: Unit Disk with Flaw

The “flaw” is a circular region of radius rc centered at (xc ,0) with
n(x) = 1 inside the flaw. Noise ε = 0.01. Wavenumber k = 1.
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Changing xc , rc = 0.05 Changing rc , xc = 0.3.

Plot (λc
j∗ − λj )/|λj |, j = 1, · · · ,7 against geometric parameters.



Complex Eigenvalues: Unit Disk n(x) = 4 + 4i

Complex eigenvalues can be detected by the same procedure as
before but now searching in a region in the complex plane.

Real part of the eigenvalue
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F. CAKONI, D. COLTON, S. MENG AND P. MONK (2016) Steklov eigenvalues in inverse scattering, SIAM J.
Appl. Math.



New Eigenvalues Problems

We introduced a general framework of modifying the far field
operator involving a family of computable scattering problems.

The injectivity of the modified far field operator relates to the
existence of non-trivial solutions to a family of homogeneous
problems, hence leading to new eigenvalue problems.

A broad question is how to design modifications of the data
operator, in other words define artificial background scattering
problems appropriate to a specific application.



Nonreflected, Nontransmitted Modes in Waveguides

Thanks to Luca Chesnel, CMAP [Click]

A-S BONNET-BEN DHIA, L. CHESNEL AND V. PAGNEUX (2018), Trapped modes and reflectionless modes as
eigenfunctions of the same spectral problem, Proc. R. Soc. A.

http://www.cmapx.polytechnique.fr/~chesnel/Documents/Gif/Extatique.gif


Transmission Eigenvalues and the Riemann
Hypothesis

The concept of transmission eigenvalues can also be considered in
connection with scattering theory in hyperbolic geometry, particularly
for automorphic solutions of the wave equation in the hyperbolic
plane with isometries corresponding to the discrete groups.

In this context, scattering results from the interaction of an incident
field with the boundary of the fundamental domain.

For more details see

F. CAKONI AND S. CHANILLO (2019) Transmission eigenvalues and the Riemann zeta function in scattering
theory for automorphic forms on Fuchsian groups of type I.



Transmission Eigenvalues and the Riemann
Hypothesis

Theorem (Cakoni-Chanillo, 2019)

In the above context, the Riemann
hypothesis is equivalent to the statement
that all transmission eigenvalues lie on
the parabola

x = 3/16 + 4y2

except for the trivial eigenvalues λ = 0
and λ = 1/4



Literature

F. CAKONI AND D. COLTON AND H. HADDAR (2016), Inverse
Scattering Theory and Transmission Eigenvalues, CBMS-NSF,
SIAM Publication.

F. CAKONI, D. COLTON, S. MENG AND P. MONK (2016) Steklov eigenvalues in inverse scattering, SIAM J.
Appl. Math.

L. AUDIBERT, F. CAKONI AND H. HADDAR (2017) New sets of eigenvalues in inverse scattering for
inhomogeneous media and their determination from scattering data, Inverse Problems.

S. COGAR, D. COLTON, S. MENG AND P. MONK (2017) The modified transmission eigenvalue problem in
inverse scattering, Inverse Problems.

L. AUDIBERT, L. CHESNEL AND H. HADDAR (2018) Transmission eigenvalues with artificial background for
explicit material index identification, C. R. Acad. Sci. Paris, Ser. I.

S. COGAR (2020), Analysis of a trace class Stekloff eigenvalue problem arising in inverse scattering, SIAM
J. Applied Mathematics.

A-S BONNET-BEN DHIA, L. CHESNEL AND V. PAGNEUX (2018), Trapped modes and reflectionless modes as
eigenfunctions of the same spectral problem, Proc. R. Soc. A.

F. CAKONI AND S. CHANILLO (2019), Transmission eigenvalues and the Riemann zeta function in scattering
theory for automorphic forms on Fuchsian groups of type I., Acta Math Sinica.


