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Novel Coronavirus Continues To Spread
by George Ochoa May 2013
A novel coronavirus (nCoV) outbreak that hegan in Sauch Arabia has infected

More than 50 travelers just back in the United States from China who had flu-
like symptoms have been tested for the H?NB ird flu virus, federal health
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Temporal Increase of Epidemic Outbreaks
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Why Study Disease Extinction

@ Control and eradication of infectious diseases are main and important public health goals.
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Why Study Disease Extinction
@ Control and eradication of infectious diseases are main and important public health goals.

@ Extinction is observed in networked populations.
» Disease extinction occurs when infective population goes to zero.
» Local extinction in connected patches but reintroduced
» Global extinction is difficult and a rare event.

Dengue Incidence for Measles Incidence by
Chiang Mai province (1/72), Thailand. Thailand province (1980-2001).
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**Data provided by Derek Cummings (JHU). Population
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Human Behavior Modifies Disease Fade Out

@ Strong evidence hospital and person-to-person transmission declined over the course of the outbreak.
@ Community stopped coming to the outpatient department as they associated the epidemic with the

hospital.
@ Suspicions governed the people who did not touch the corpses.

A Camachs et ol / Epidemics xex (2004) oo
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EPIDEMICS, v. 9, pp. 70-78, 2014, Zaire, 1976 Ebola
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Outline

@ Dynamics of Stochastic Adaptive Networks
» Epidemics on homogeneous networks
» Human behavior of avoidance

@ Extinction and control
» Extinction in an adaptive network
» Vaccination and extinction enhancement

@ Analyzing fluctuations to extinction
» All-to-all networked coupled populations
» Using a dynamical system framework to solve the problem

@ Extending fluctuation analysis to networks
» Homogeneous networks
» General theory of heterogeneous networks
» Optimal control on heterogeneous networks

@ Conclusions
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Dynamics of Stochastic Adaptive Networks

@ In real networks nodes and links change in
time-Dynamic networks
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Dynamics of Stochastic Adaptive Networks

@ In real networks nodes and links change in
time-Dynamic networks

@ Node dynamics affects network geometry;
Network geometry affects node dynamics

@ Feedback loop interaction i r.\r £

a%"d@.

vaqu
yolut oo

@ Adaptive networks applications
Rules for Adaptive Network Dynamics.
» Human social networks e Byrarmies
» Fads, terrorist networks ga . @b . R
» Self healing networks i —— ] )
» Swarming of autonomous agents Sacasan e e Sy
» Immune system networks Netwerk Dynemes - Resirng,
» Biological networks (e.g., food webs) o
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Epidemics on Adaptive Social Networks

§: susceptible

Epidemic dynamics: I: infected

: . R: recovered
Avoidance Behavior _
Ng: AB links

P r q p: infection rate

S & "R -5 r: recovery rate

q: resusceptibility rate

Network dynamics—rewiring: We PENG Bt
rewire
! rate w :
/ —
® o———®8
SorR SorR SorR SOFR

Run Monte Carlo simulation for N=10* nodes, K=10° links

(Shaw and Schwartz PRE 77: 066101, 2008)
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Mean Field Approximation

P r q
S —I—R—S§
* Node dynamics—depends on node pairs (links)

: K
Py=qPr—piyPs. Nag: AB links
. K p: infection rate
Pr=pxPsi—rPy, . recovery rate
q: resusceptibility rate
Py=rP,—gP;. w. rewiring rate
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Mean Field Approximation

P r q
S —I—"R—S§
* Node dynamics—depends on node pairs (links)

: K
Py=qPr—piyPs. Nag: AB links
" K p: infection rate
Pr=pxPsi—rPy, . recovery rate
q: resusceptibility rate
Py=rP,—gP;. w. rewiring rate

* Link dynamics—depends on triples

s o KPssPy K P
P_g_; = 2}'JE PS + {']P!-R - !.P.S." —fwPg— P PSI + EP_?
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Creation of New States

+ Rewiring leads to bistable
behavior
— Extinct and endemic states

infectives [

* As rewiring rate w
increases, larger infection
rate p is needed for
disease to persist

infectives /

Monte Carlo e
mean field =

4=0.0016, r=0.002

Ira Schwartz (US Naval Research Laboratory) Fear in Adaptive Networks
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Network structure analysis-Degree distribution

g=0.0016, =0.002

Time series for degree of a single node: .
S— =
i 1 S — %
2 il 4 R =
S 1 i .4 J
B : I Elda] 4
| d etk B lai|
el | H i ! {'lf |
i 4 il ! i i
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Node degree cycles in time
I loses links
R and S gain links
Fear in Adaptive Networks
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Bifurcation Structure Analysis:
SIRS Mean Field Model

4=0.0018, =0.002

0 ,
=P ()
3 -==-BP A {b)
£ 03 —H8 5 8 %
e =
= |7}
o r"'./ £ 4
£ sp2 Regionl /-6/ : =
= "™ Disease free” nedionlll] g — :
: >~ Bistabilityq @ o4
o © "-._
" Region IV \g 0.2 ¢
O_k:;-:f'f-' Endemic - 3
o g ; 8 f b 2 4 ] El
=10 -] % 107

Infection rate
Region | —one stable DFE
Region Il = Stable DFE and unstable state-Oscillations can occur!
Region lil - Bistability
Region IV — One stable endemic staie

Ira Schwartz (US Naval Research Laboratory) Fear in Adaptive Networks



Fluctuations and Extinction Times
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+ Lifetime is defined as the time to extinction e  Saddle-Node Fluctuations
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o 2 L]
+  Fluctuations increase near the Saddle-Node § fi L
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Extinction and Control in
Adaptive Networks




Adaptive network with vaccinations

Epidem

ic dynamics:

) g

4
Network dynamics—rewiring:

!

»
o

SorV

rewire
rate w
=
L ] P
SorV S or v

/
®

S: susceptible
I: infected
V: vaccinated

p: infection rate

r: recovery rate

n(f): vaccination rate
q: resusceptibility rate
w. rewiring rate

Waccination rate is Poisson
where events happen with
average frequency v and a
fraction 4 of susceptibles are
vaccinated in each event.

.

SorV

Run Monte Carlo simulation for N=10% nodes, K=10° links
L. B. Shaw and |. B. Schwartz, Phys. Rev. E (2010).
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Effect of vaccination and rewiring on degree

= Vaccination occurs on susceptible nodes

= In the adaptive network, susceptible nodes have higher degree due to
rewiring

= Vaccination of high degree nodes provides better protection (e.g., Pastor-
Satorras and Vespignani PRE 65: 036104, 2002)

= In the static network, high degree nodes tend to be infected and are not
vaccinated

1 s

S —
| —
05 ®

V —

vaccine events x

node fraction

ﬂ\ p=0.003, r=0.002,

0 5 0 15 20 q:OU{)OZ’ A=0.1,
time (units of 10° MCS) v=0.0005

avg. degree
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Adaptive network with vaccinations

:
+ Poisson-distributed ) ' ; '
pulse vaccine control iy
+ Compute lifetime of ol
the infected state g
* Average over 100 &
runs E
+ Rewiring in S ! |
combination with Fewer resources
vaccination '\lr_i?;rjg;e\?accination rate
significantly shortens b
the disease lifetime B
10 10 10 10 10

vaccine frequency v

p=0.003, =0.002, g=0.0002, A=0.1
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Analyzing Fluctuations
to Extinction
All-to-All Connected Networks




Basic SIS model-All-to-All Coupled Population Network

Compartmental model - No network structure:

Two state variables:
Susceptibles, S
Infectives, / Total population size, N

S+I1=N
Assume N is large.

Parameters:
birth and death rates, u
contact rate, 3
recovery rate, s

Reproductive infection rate
Ro = B/(1+ K)

Distance to the bifurcation point

Parameters for diseases available in Anderson and May (1991)

Ira Schwartz (US Naval Research Laboratory)
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Stochastic modeling

There exists randomness, or noise, in the finite N model *

. 120
@ Internal noise: Ro—14
Randomness of the 100
interactions in the system Y
Q
g 60 i Ik 1 Il I A L 4
@ Extinction - Analogous to £ AN T “ it 7
arbitrarily small noise
inducing escape of a 2
particle from % 20 40 60 80 100
a potential well. 05 time
= Disease
*Schwartz et al J R Soc Interface £ |Free
8: 1699-1707 (2011) §
Endemic
-05 : : ‘ ‘
20 40 60 80 100

Infected
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Characterizing the “almost constant” density

The extinct state (X, = I = 0) is an absorbing boundary and the system approaches it as t — oc.

Op/0t = 0.

However, if the population size is sufficiently large, the probability density will be Quasi-stationary-

Probability S(Xz)

0.05

0.045

0.04

%

—Ry=2 ||
Xy =100 -==Ry=11

event.

50 100 150
X

Infected

150

50

If 9p/0t ~ 0, then the value of p(0, t) is exponentially small and we define extinction as a rare

Ira Schwartz (US Naval Research Laboratory)
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Master Equation Approach-Modeling the Density

Consider a well-mixed finite population of size N

@ Discrete state vector X = (S, R, ...) .
@ Probability p(X, t) of finding the system in state X at time ¢:
@ Random state transition rates of increment r: W(X,r).

Ira Schwartz (US Naval Research Laboratory) Fear in Adaptive Networks

GMU CMAI Colloquim 2020

23/49



Master Equation Approach-Modeling the Density

Consider a well-mixed finite population of size N
@ Discrete state vector X = (S,/, R, ...) .

@ Probability p(X, t) of finding the system in state X at time f:
@ Random state transition rates of increment r: W(X,r).

The master equation definition

0 X 1)
il = S r)aX 1) WO,
the gain to state X the loss of state X
from state X-r to other states

It is the gain-loss equation for the probabilities of the separate states X.

Van Kampen, N.G., Stochastic processes in physics and chemistry, Elsevier (1992).
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Approximating quasi-stationary solutions
To analyze the master equation, make the ansatz:

p(X, 1) = exp(~NS(q)), for g = X/N.
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Approximating quasi-stationary solutions

To analyze the master equation, make the ansatz:

p(X, 1) = exp(~NS(q)), for g = X/N.

Large N assumption: Action S satisfies Hamilton-Jacobi equation:
oS oS
- ~\)=0
ot TH (q’ 6q) ’

with Hamiltonian

H(q: p) = : ) — 1 where w(q;r)= W(q;r)/N Conjugate
(a:p) Zr:w(q r)[exp(p - ¥) — 1] momonta p . 95/06,
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Approximating quasi-stationary solutions
To analyze the master equation, make the ansatz:

p(X, t) ~ exp(—NS(q)), for q = X/N.
Large N assumption: Action S satisfies Hamilton-Jacobi equation:
with Hamiltonian

H(q: p) = : ) — 1 where w(q;r)= W(q;r)/N Conjugate
(a:p) Zr:w(q r)[exp(p - ¥) — 1] momonta p . 95/06,

. L . . oS
Since we assume the distribution is quasi-stationary, T 0.

Kubo, et al., J. Stat. Phys. 9 (1973); Gang, PRA, 36 (1987); Dykman, et al., J. Chem Phys,
100 (1994); Elgart, et al., PRE, 70 (2004); and many others.
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The most likely observed paths to extinction
Shape of distribution described by the Hamiltonian equations of motion:

q = 6PH(q7 p: t): p = _aqH(qa P t)7 pIUS BC

Deterministic system describe the dynamics of the stochastic system.
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The most likely observed paths to extinction
Shape of distribution described by the Hamiltonian equations of motion:

q = 6PH(q7 p: t): p = _aqH(qa P t)7 pIUS BC

Deterministic system describe the dynamics of the stochastic system.
@ Hamiltonian EOM doubles the dimension of your system.
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The most likely observed paths to extinction
Shape of distribution described by the Hamiltonian equations of motion:
q = aPH(q7 p: t): p = _aqH(qa P t)7 pIUS BC

Deterministic system describe the dynamics of the stochastic system.

@ Hamiltonian EOM doubles the dimension of your system.

» Attractors — saddles
» Saddles — saddles
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The most likely observed paths to extinction
Shape of distribution described by the Hamiltonian equations of motion:

q = 8PH(q7 P t): p = _aqH(qa P t)7 pIUS BC

Deterministic system describe the dynamics of the stochastic system.

@ Hamiltonian EOM doubles the dimension of your system.

» Attractors — saddles
» Saddles — saddles

@ A heteroclinic trajectory connects the endemic state to the stochastic extinction state.
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The most likely observed paths to extinction
Shape of distribution described by the Hamiltonian equations of motion:

q = 8PH(q7 P t)a p = _8qH(qa P t)7 pIUS BC

Deterministic system describe the dynamics of the stochastic system.

@ Hamiltonian EOM doubles the dimension of your system.
» Attractors — saddles
» Saddles — saddles

@ A heteroclinic trajectory connects the endemic state to the stochastic extinction state.

600

500

We call it the optimal path to extinction.

IS
S
S

Infected
w
8
S

The optimal path maximizes the PDF of
the pre-history solutions that go extinct.

N
I3
3

.
o
S

0 — 0
11,100 11,400 12,000
Susceptible

Ira Schwartz (US Naval Research Laboratory) Fear in Adaptive Networks GMU CMAI Colloquim 2020 25/49



The Stochastic SIS model - Topology*
Constrain the population, N: S+ /=N

Hamiltonian equations of motion- scaled infectives x, = //N and momenta p»
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The Stochastic SIS model - Topology*
Constrain the population, N: S+ /=N

Hamiltonian equations of motion- scaled infectives x, = //N and momenta p»

The Hamiltonian system has three steady states:

@ The disease free equilibrium, (x2, p2) = (0,0).
o The endemic state, (X2, p2) = (1 — 7, 0).

|Ro=B8/(n+r)>1]

@ The stochastic extinction state, (X2, p2) = (0, — In(Rp)).

P2 (1 N RLUO.)/7
Find the action along the path

Z2
Sopt f1 In R0(1 —X2)) dX2 /

In(Ffo) -1+ ﬁo %) =In(Ro(1 — 2))

(0,—1n(Ry)) y

Forgoston et al Bull Math Bio 73: 495-514 (2011)
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The Stochastic SIS model - Mean Time to extinction

Approximate the mean time to extinction 7ex; < 1/pext

Probability S(X)

°
S e
] R

100
X2

6

10 .
—theory
. O simulation
10
- 2
510
<
10° |
o°oo
10'2 L L L L L
1 1.1 1.2 1.3 1.4 1.5 1.6
Ry

Doering, et al., Multiscale Model. Simul. (2005); Dykman et al, PRL 101 (2008);

Schwartz et al, J Stat Mech, P01005 (2009).
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Fluctuation Analysis on Networks

@ Extend fluctuation analysis and control to
stochastic networks

@ Examine stochastic networks with no
rewiring
Rewiring rate w = 0

Rewiring for adaptation, IB Schwartz and LB Shaw
Physics 3 (17) (2010)
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Homogeneous Networks-Extinction

@ Structure of the mean field:

N nodes, K links
2K /N mean degree

X = [Ns, Ni, Nss, Ns;, Ny

Ns, N, are nodes

Nss, Ns;, Ny are links

Aj is the adjacency matrix, X is
max eigenvalue

@ Ry = Reproduction infection no.
where

Ro = ,@)\
BS Lindley, LB Shaw, IB Schwartz EPL 108,
58008 2014

Ira Schwartz (US Naval Research Laboratory)

@ Large

fluctuation analysis for SIS stochastic networks

States

),

susceptible node i

infected m'rlllz it

Reactions

A
S ™o e
.i —l’i

Infection

density
(x)

Fear in Adaptive Networks

-7 “transcritical

e bifurcation
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Modeling the Transitions for a Homogeneous Network

@ Constructive approach - Perturb from global @ [ is infection rate
to local population and track the optimal path ¢ ,is g recovery rate

@ ¢ = 0 corresponds to all to all coupling ® X = [Ns, N;, Nss, Ns;, Nyj]
@ ¢ = 1 corresponds to local network coupling

Ira Schwartz (US Naval Research Laboratory) Fear in Adaptive Networks GMU CMAI Colloquim 2020
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Modeling the Transitions for a Homogeneous Network

@ Constructive approach - Perturb from global
to local population and track the optimal path

@ ¢ = 0 corresponds to all to all coupling
@ ¢ = 1 corresponds to local network coupling

Transition rates?

W(X, V1) = eﬂNs/ S— | Local

2K NsN
W(X.v2) = (1 - 985~

W(X7 Vg) = I’N/,

S — 1 Global

I - S Recovery

@ [ is infection rate
@ ris arecovery rate
@ X = [Ns, Nj, Nss, Ns;, Nyj]

aTim Rogers et al J. Stat. Mech. Theory and Experiment, PO8018 2012

Ira Schwartz (US Naval Research Laboratory)
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Modeling the Transitions for a Homogeneous Network
@ Constructive approach - Perturb from global @ [ is infection rate
to local population and track the optimal path
@ ¢ = 0 corresponds to all to all coupling
@ ¢ = 1 corresponds to local network coupling

@ ris arecovery rate
@ X = [Ns, N, Nss, Ns;, Njj|

Transition rates?

Increments
2;\{55 21\"_‘:,'_‘:,' A"—S_( )’\"5_(
W(X, 1) = ¢BNs S— 1 Local "1:[‘“*‘ S S ‘(”T)*(” 5 )]
2K NsN 2Ngs 2Ngs Ngi Ny
W(X.v2) = (1= )% 7\/’ S— 1 Global uz=[—1,1f— g o 5]
W(X,v3) = rN;, I — S Recovery o — {1‘_ 1 ﬂ}w_# QNI'n ‘ _‘EJY;;]

aTim Rogers et al J. Stat. Mech. Theory and Experiment, PO8018 2012
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Modeling the Transitions for a Homogeneous Network
@ Constructive approach - Perturb from global @ [ is infection rate
to local population and track the optimal path
@ ¢ = 0 corresponds to all to all coupling
@ ¢ = 1 corresponds to local network coupling

@ ris arecovery rate
@ X = [Ns, N, Nss, Ns;, Njj|

Transition rates?

Increments
2;\{55 21\"_‘:,'_‘:,' A"—S_( )’\"5_(
W(X, 1) = ¢BNs S— 1 Local "1:[‘“*‘ S S ‘(”T)*(” 5 )]
2K NsN 2Ngs 2Ngs Ngi Ny
W(X.v2) = (1= )% 7\/’ S— 1 Global uz=[—1,1f— g o 5]
W(X,v3) = rN;, I — S Recovery o — {1‘_ 1 ﬂ}w_# QNI'n ‘ _‘EJY;;]

aTim Rogers et al J. Stat. Mech. Theory and Experiment, PO8018 2012

3
H(,p) = Zw(mﬁuk)(ep'”’“ —1)
k=1
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Optimal paths for a Stochastic Network

Computed paths from theory
Lindley etal, Physica D 255, 22-30 (2013)

0.01 %
@
0.008 -
0.008
z ’ ke
_— S ',f
0.004
—e=0
0.002f s
o --g=1
% 2 6
I x107

Infective fraction vs Il links

p=1.03x10"%, r = 0.002,N = 10*,K = 10°

@ ¢ =0 - allto all coupling

@ ¢ =1 -local network coupling

Ira Schwartz (US Naval Research Laboratory)
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Optimal paths for a Stochastic Network
Compared to Monte Carlo PDF (e = 1)

sl

Computed paths from theory
Lindley etal, Physica D 255, 22-30 (2013)

2000
BODO

0.01 7000
@
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0.006
£
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; —e=5 210
KA -g=1 ‘3 5000
% 2 4 6 . w0
I x107™ i )
Infective fraction vs Il links 2"

p=1.03x10"%, r = 0.002,N = 10*,K = 10°

@ ¢ =0 - allto all coupling
@ ¢ =1 -local network coupling

o
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Sl Links
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Extinction Times for a Stochastic Network-No rewiring

As a function of population size As a function of infection probability

;.;__10'3

x10°

log(t)/N

0 5000 10000 15000
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Extinction in heterogeneous networks-General Theory
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Extinction in heterogeneous networks-General Theory
Consider SIS transitions on network having degree distribution g
@ Assume adjacency matrix follows : A; ~ kik;/(N (k)).
@ Bin infected nodes of degree k, Ik
@ Transition rates
Infection rate w" (1) = Bk(Nk — Ic) X" K'lkr /(N (k)) with lx — l + 1

Recovery rate w;*°(l) = alg with Iy — fc — 1.
NK = gkN
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Extinction in heterogeneous networks-General Theory
Consider SIS transitions on network having degree distribution g
@ Assume adjacency matrix follows : A; ~ kik;/(N (k)).
@ Bin infected nodes of degree k, Ik
@ Transition rates
Infection rate w" (1) = Bk(Nk — Ic) X" K'lkr /(N (k)) with lx — l + 1

Recovery rate w;*°(l) = ale with Ik — Iy — 1.
Ny = gk N

Master Equation
Zw'"fl_u (=1, 1) — W (Np(l, 1)

+Z ’e°l+1k (1 1k, 1) — Wi (1)p(l, 1),
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Extinction in heterogeneous networks-General Theory
Consider SIS transitions on network having degree distribution g

@ Assume adjacency matrix follows : A; ~ kik;/(N (k)).
@ Bin infected nodes of degree k, Ik
@ Transition rates
Infection rate w;™ (1) = Bk(Nkx — ) Sk Kl /(N (k)) with fe — l + 1

Recovery rate w;*°(l) = alg with Iy — fc — 1.
NK = gkN

Master Equation
Zw'"fl_u (=1, 1) — W (Np(l, 1)
+Z ’e°l+1k (1 1k, 1) — Wi (1)p(l, 1),

Hamiltonian from WKB ansatz (x = I/N):

H(x,p)=> ﬁk(gk—xk)(epk_1)zk<:§/ + axi(e P —1)|.
k k'
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Extinction paths in hetergeneous networks

Optimal Path = -
Endemic State * Bllmo_dal. POIsson_
Extinction ° (Annealed) N=300; k £ [5,50] N=350; <k>=16
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Extinction Path Projections in a Power Law Network

Rg-1 = Distance from threshold

& Epidemic —

& tRa = 5.1)
@& :
015
3
»7
03
)
1] 0.2 (] 0.6 0x ¢§‘$
YHw s

Ira Schwartz (US Naval Research Laboratory) Fear in Adaptive Networks



Extinction Path Projections in a Power Law Network

Ry-1 = Distance from threshold

Epidemic -
(R, = 5.1)

03

[ [F] (] (X3 (K] &

-

J. Hindes and I. B. Schwartz, Phys. Rev. Lett. 117, 028302 (
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Extinction times and PDF for real networks
Extinction Times vs. Action
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Extinction times and PDF for real networks
Extinction Times vs. Action Probability vs Average infection fraction
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Optimal external control

Bimodal Network: %90 with
degree 5 and 10% with degree 50

Who to target?

llings et al., PLoS One 8, 70211 (2013). J. Hindes et al., Phys. Rev. Lett. 117, 028302 (2016).
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Optimal external control

Bimodal Network: %90 with
degree 5 and 10% with degree 50

High-degree recoverrate: 1+ yw

Low-degree recover rate: 1+ y(1-w)

Who to target?

llings et al., PLoS One 8, 70211 (2013). J. Hindes et al., Phys. Rev. Lett. 117, 028302 (2016).
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Optimal external control

Bimodal Network: %90 with
degree 5 and 10% with degree 50 &

High-degree recoverrate: 1+ yw
Low-degree recover rate: 1+ y(1-w)

Who to target?

0.0g, ®Maximize treatment rate
A minimize distance to bifurcation
o minimize endemic state

m MINIMIZE EXTINCTION

0.22 TIME

S/N

0.16

0.10

llings et al., PLoS One 8, 70211 (2013). J. Hindes et al., Phys. Rev. Lett. 117, 028302 (2016).
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Optimal external control

Bimodal Network: %90 with
degree 5 and 10% with degree 50 &

High-degree recoverrate: 1+ yw

Low-degree recover rate: 1+ y(1-w)
Who to target? '

0.0g, ®Maximize treatment rate

A minimize distance to bifurcation 10°
o minimize endemic state N=200 .,
= MINIMIZE EXTINCTION N R
0.22} TIME 10 .. S
. K .
. — J
. Y725 .- '
S/N <T> b e
~. .'
0.161 ...
5 ~‘~~ o.
10 ., ¥=3.0 .°
“ong.8-"
0.10 10*
0.2 0.4 0.6 0.8 1.0
w

llings et al., PLoS One 8, 70211 (2013). J. Hindes et al., Phys. Rev. Lett. 117, 028302 (2016).
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Optimal external control

Bimodal Network: %90 with ‘
degree 5 and 10% with degree 50 &

0.28
0.22
S/IN

0.16

0.10

llings et al., PLoS One 8, 70211 (2013).
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Who to target?

e maximize treatment rate
A minimize distance to bifurcation
o minimize endemic state

m MINIMIZE EXTINCTION
TIME

<T>

J. Hindes et al., Phys. Rev. Lett. 117, 028302 (2016).

High-degree recoverrate: 1+ yw

10°

10*

Fear in Adaptive Networks

Low-degree recover rate: 1+ y(1-w)
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Adaptive Network Control
Enhancing the time to extinction



Adaptive Network Progress
Corrected general extinction theory - statistical moment closure
PDF depends on width of susceptible distribution

(a) Infective fraction vs. time  (b) PDF of infective nodes theorv(red)
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Adaptive Network Progress

Corrected general extinction theory - statistical moment closure
PDF depends on width of susceptible distribution
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Adaptive Network Progress
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Adaptivity due to rewiring introduces
new states

Initial small rewiring causes a
discontinuous decrease in extinction
times

Extinction times depend on network
heterogeneity-Suseptible distribution
become more homogeneous.

GMU CMAI Colloquim 2020 44/49



Conclusions
@ A general network formulation of extinction for a disease in a finite population is
developed-including adaptive networks.
@ We can quantify the effect of treatment programs on extinction rates.
@ For limited resources, larger treatment pulses less often are most effective.

@ Used optimal paths to predict extinction times in terms of bifurcation parameters for general
networks.

@ Optimal control may be designed based on minimiziing the action as a function of degree.

Periodic and random vaccination schedules
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Future Directions and Things Not Discussed

@ How does complex network structure affect route to extinction?

» Topolgy, deterministic time dependent contacts, etc..
» Beyond pairwise approximation
» Non-Markovian assumptions

@ Extend theory to other networks

» Switching and adaptive networks
» Networks with delays
> Noise...
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Full SIS treatment model (Unconstrained population)

Remove fixed population constrain - N fluctuates

BSI/N
UN— S kI +v|gl] I
’ ’
wS ul

W((S, 1);(lgl],— gl])) = v, treatment.
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Finite resources of SIS treatment - Optimal schedule

gv = constant

Decrease in mean time to extinction as the g increases and v decreases.
Larger fraction treated fewer times per year is most effective.
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