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Temporal Increase of Epidemic Outbreaks

Smith KF, 2014 J. R. Soc. Interface 11: 20140950. http://dx.doi.org/10.1098/rsif.2014.0950
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Why Study Disease Extinction
Control and eradication of infectious diseases are main and important public health goals.

Extinction is observed in networked populations.
I Disease extinction occurs when infective population goes to zero.
I Local extinction in connected patches but reintroduced
I Global extinction is difficult and a rare event.

Dengue Incidence for
Chiang Mai province (1/72), Thailand.
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Human Behavior Modifies Disease Fade Out
Strong evidence hospital and person-to-person transmission declined over the course of the outbreak.

Community stopped coming to the outpatient department as they associated the epidemic with the
hospital.

Suspicions governed the people who did not touch the corpses.

EPIDEMICS, v. 9, pp. 70-78, 2014, Zaire, 1976 Ebola
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Outline
Dynamics of Stochastic Adaptive Networks

I Epidemics on homogeneous networks
I Human behavior of avoidance

Extinction and control
I Extinction in an adaptive network
I Vaccination and extinction enhancement

Analyzing fluctuations to extinction
I All-to-all networked coupled populations
I Using a dynamical system framework to solve the problem

Extending fluctuation analysis to networks
I Homogeneous networks
I General theory of heterogeneous networks
I Optimal control on heterogeneous networks

Conclusions
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Dynamics of Stochastic Adaptive Networks

In real networks nodes and links change in
time-Dynamic networks

Node dynamics affects network geometry;
Network geometry affects node dynamics
Feedback loop interaction
Adaptive networks applications

I Human social networks
I Fads, terrorist networks
I Self healing networks
I Swarming of autonomous agents
I Immune system networks
I Biological networks (e.g., food webs)
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Epidemics on Adaptive Social Networks
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Mean Field Approximation
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Mean Field Approximation
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Creation of New States
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Network structure analysis-Degree distribution
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Bifurcation Structure Analysis:
SIRS Mean Field Model
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Fluctuations and Extinction Times
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Extinction and Control in
Adaptive Networks
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Adaptive network with vaccinations
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Effect of vaccination and rewiring on degree
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Adaptive network with vaccinations
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Analyzing Fluctuations
to Extinction

All-to-All Connected Networks
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Basic SIS model-All-to-All Coupled Population Network
Compartmental model - No network structure:

Two state variables:
Susceptibles, S
Infectives, I Total population size, N

S + I = N
Assume N is large.

Parameters:
birth and death rates, µ
contact rate, β
recovery rate, κ

Reproductive infection rate
R0 = β/(µ+ κ)
Distance to the bifurcation point

Parameters for diseases available in Anderson and May (1991)
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Stochastic modeling
There exists randomness, or noise, in the finite N model ∗

Internal noise:
Randomness of the
interactions in the system

Extinction - Analogous to
arbitrarily small noise
inducing escape of a
particle from
a potential well.

∗Schwartz et al J R Soc Interface
8: 1699-1707 (2011)
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Characterizing the “almost constant” density
The extinct state (X2 = I = 0) is an absorbing boundary and the system approaches it as t →∞.

However, if the population size is sufficiently large, the probability density will be Quasi-stationary-
∂ρ/∂t ≈ 0.
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If ∂ρ/∂t ≈ 0, then the value of ρ(0, t) is exponentially small and we define extinction as a rare
event.

Ira Schwartz (US Naval Research Laboratory) Fear in Adaptive Networks GMU CMAI Colloquim 2020 22 / 49



Master Equation Approach-Modeling the Density

Consider a well-mixed finite population of size N

Discrete state vector X = (S, I,R, ...) .
Probability ρ(X, t) of finding the system in state X at time t :
Random state transition rates of increment r: W (X, r).

The master equation definition

∂ρ(X, t)
∂t

=
∑

r

[W (X− r; r)ρ(X− r, t)︸ ︷︷ ︸
the gain to state X

from state X-r

−W (X; r)ρ(X, t)︸ ︷︷ ︸
the loss of state X

to other states

].

It is the gain-loss equation for the probabilities of the separate states X.

Van Kampen, N.G., Stochastic processes in physics and chemistry, Elsevier (1992).
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Approximating quasi-stationary solutions

To analyze the master equation, make the ansatz:

ρ(X, t) ≈ exp(−NS(q)), for q = X/N.

Large N assumption: Action S satisfies Hamilton-Jacobi equation:

∂S
∂t

+ H
(

q,
∂S
∂q

)
= 0,

with Hamiltonian

H(q;p) =
∑

r

w(q; r)[exp(p · r)− 1] where w(q;r)= W(q;r)/N Conjugate
momenta p = ∂S/∂q.

Since we assume the distribution is quasi-stationary,
∂S
∂t

= 0.

Kubo, et al., J. Stat. Phys. 9 (1973); Gang, PRA, 36 (1987); Dykman, et al., J. Chem Phys,
100 (1994); Elgart, et al., PRE, 70 (2004); and many others.
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The most likely observed paths to extinction
Shape of distribution described by the Hamiltonian equations of motion:

q̇ = ∂pH(q,p; t), ṗ = −∂qH(q,p; t), plus BC

Deterministic system describe the dynamics of the stochastic system.

Hamiltonian EOM doubles the dimension of your system.
I Attractors→ saddles
I Saddles→ saddles

A heteroclinic trajectory connects the endemic state to the stochastic extinction state.

We call it the optimal path to extinction.

The optimal path maximizes the PDF of
the pre-history solutions that go extinct.
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q̇ = ∂pH(q,p; t), ṗ = −∂qH(q,p; t), plus BC

Deterministic system describe the dynamics of the stochastic system.
Hamiltonian EOM doubles the dimension of your system.

I Attractors→ saddles
I Saddles→ saddles

A heteroclinic trajectory connects the endemic state to the stochastic extinction state.

We call it the optimal path to extinction.

The optimal path maximizes the PDF of
the pre-history solutions that go extinct.

11,100 11,400 11,700 12,000
0

100

200

300

400

500

600

Susceptible

In
fe

ct
ed

 

 

0

200

400

600

800

1000

Ira Schwartz (US Naval Research Laboratory) Fear in Adaptive Networks GMU CMAI Colloquim 2020 25 / 49



The most likely observed paths to extinction
Shape of distribution described by the Hamiltonian equations of motion:
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The Stochastic SIS model - Topology∗

Constrain the population, N: S + I = N

Hamiltonian equations of motion- scaled infectives x2 = I/N and momenta p2

The Hamiltonian system has three steady states: R0 = β/(µ+ κ) > 1

The disease free equilibrium, (x2,p2) = (0,0).
The endemic state, (x2,p2) = (1− 1

R0
,0).

The stochastic extinction state, (x2,p2) = (0,− ln(R0)).

Find the action along the path

Sopt =
∫ 0

1− 1
R0

− ln(R0(1− x2)) dx2

= ln(R0)− 1 + 1
R0

x2

(
1 − 1

R0
,0

)
p2

(0,− ln(R0))

p2(x2) = ln(R0(1 − x2))

Forgoston et al Bull Math Bio 73: 495-514 (2011)
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The Stochastic SIS model - Mean Time to extinction

Approximate the mean time to extinction τext ∝ 1/ρext
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Doering, et al., Multiscale Model. Simul. (2005); Dykman et al, PRL 101 (2008);
Schwartz et al, J Stat Mech, P01005 (2009).
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Fluctuation Analysis on Networks

Extend fluctuation analysis and control to
stochastic networks

Examine stochastic networks with no
rewiring

Rewiring rate w = 0

Rewiring for adaptation, IB Schwartz and LB Shaw
Physics 3 (17) (2010)
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Homogeneous Networks-Extinction
Structure of the mean field:

N nodes, K links
2K/N mean degree

X = [NS ,NI ,NSS ,NSI ,NII ]
NS ,NI are nodes
NSS ,NSI ,NII are links
Aij is the adjacency matrix, λ is
max eigenvalue

R0 ≡ Reproduction infection no.
where
R0 ≡ βλ

BS Lindley, LB Shaw, IB Schwartz EPL 108,

58008 2014

Large fluctuation analysis for SIS stochastic networks
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Modeling the Transitions for a Homogeneous Network
Constructive approach - Perturb from global
to local population and track the optimal path
ε = 0 corresponds to all to all coupling
ε = 1 corresponds to local network coupling

β is infection rate
r is a recovery rate
X = [NS,NI ,NSS,NSI ,NII ]

Transition ratesa

W (X , ν1) = εβNSI S → I Local

W (X , ν2) = (1− ε)β 2K
N

NSNI

N
S → I Global

W (X , ν3) = rNI , I → S Recovery

aTim Rogers et al J. Stat. Mech. Theory and Experiment, PO8018 2012

Increments
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Optimal paths for a Stochastic Network
Computed paths from theory
Lindley etal, Physica D 255, 22-30 (2013)
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Extinction Times for a Stochastic Network-No rewiring
As a function of population size

log(τ)/N ≈ S + log(B)/N

Pre-factor at ε = 0: B =

√
2π

Reff
0
N

r(Reff
0 −1)2

: Reff
0 = 2pK/(Nr)

As a function of infection probability

No fitting parameters
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Extinction in heterogeneous networks-General Theory

Consider SIS transitions on network having degree distribution gk

Assume adjacency matrix follows : Aij ≈ kikj/(N 〈k〉).
Bin infected nodes of degree k , Ik
Transition rates
Infection rate w inf

k (I) = βk(Nk − Ik )
∑

k′ k ′Ik′/(N 〈k〉) with Ik → Ik + 1
Recovery rate w rec

k (I) = αIk with Ik → Ik − 1.
NK ≡ gk N

Master Equation
∂ρ

∂t
(I, t) =

∑

k

w inf
k (I− 1k )ρ(I− 1k , t)− w inf

k (I)ρ(I, t)

+
∑

k

w rec
k (I + 1k )ρ(I + 1k , t)− w rec

k (I)ρ(I, t),

Hamiltonian from WKB ansatz (x = I/N):

H(x,p)=
∑

k

[
βk
(
gk−xk

)(
epk−1

)∑

k ′

k ′xk ′

〈k〉 + αxk
(
e−pk−1

)
]
.
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Bin infected nodes of degree k , Ik
Transition rates
Infection rate w inf

k (I) = βk(Nk − Ik )
∑

k′ k ′Ik′/(N 〈k〉) with Ik → Ik + 1
Recovery rate w rec

k (I) = αIk with Ik → Ik − 1.
NK ≡ gk N

Master Equation
∂ρ

∂t
(I, t) =

∑

k

w inf
k (I− 1k )ρ(I− 1k , t)− w inf

k (I)ρ(I, t)

+
∑

k

w rec
k (I + 1k )ρ(I + 1k , t)− w rec

k (I)ρ(I, t),

Hamiltonian from WKB ansatz (x = I/N):

H(x,p)=
∑

k

[
βk
(
gk−xk

)(
epk−1

)∑

k ′

k ′xk ′

〈k〉 + αxk
(
e−pk−1

)
]
.
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Extinction paths in hetergeneous networks
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Extinction Path Projections in a Power Law Network

J. Hindes and I. B. Schwartz, Phys. Rev. Lett. 117, 028302 (2016).
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Extinction times and PDF for real networks
Extinction Times vs. Action

Symbols simulation - Dashed lines theory

Probability vs Average infection fraction

High School Network-788 nodes

Theory is plotted in red

Near bifurcation : ln < T >∝ N <k2>3

<k3>2 δ
2

δ is bifurcation distance
Probability exponent decreases with heterogeneity
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Optimal external control

Bimodal Network: %90 with 

degree 5 and 10% with degree 50
 

Who to target?
 
 

L. Billings et al., PLoS One 8, e70211 (2013). J. Hindes et al., Phys. Rev. Lett. 117, 028302 (2016).
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Optimal external control

Bimodal Network: %90 with 

degree 5 and 10% with degree 50
  

Who to target?
 
 

 

  

High-degree recover rate: 1+ γw

Low-degree recover rate: 1+ γ(1-w)

L. Billings et al., PLoS One 8, e70211 (2013). J. Hindes et al., Phys. Rev. Lett. 117, 028302 (2016).
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Optimal external control
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Low-degree recover rate: 1+ γ(1-w)

L. Billings et al., PLoS One 8, e70211 (2013). J. Hindes et al., Phys. Rev. Lett. 117, 028302 (2016).
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Optimal external control
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Optimal external control
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High-degree recover rate: 1+ γw

Low-degree recover rate: 1+ γ(1-w)

EXPONENTIAL REDUCTION

IN EXTINCTION TIMES

L. Billings et al., PLoS One 8, e70211 (2013). J. Hindes et al., Phys. Rev. Lett. 117, 028302 (2016).
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Adaptive Network Control
Enhancing the time to extinction
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Adaptive Network Progress
Corrected general extinction theory - statistical moment closure
PDF depends on width of susceptible distribution

(a) Infective fraction vs. time (b) PDF of infective nodes theory(red)

PDF of infective-susceptible links theory(red)

J Hindes, IB Schwartz, LB Shaw, PRE 97 (1),
012308(2018) , arXiv:1708.03193
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Adaptive Network Progress

Infection rate p

Adaptivity due to rewiring introduces
new states

Initial small rewiring causes a
discontinuous decrease in extinction
times
Extinction times depend on network
heterogeneity-Suseptible distribution
become more homogeneous.
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Conclusions
A general network formulation of extinction for a disease in a finite population is
developed-including adaptive networks.
We can quantify the effect of treatment programs on extinction rates.
For limited resources, larger treatment pulses less often are most effective.
Used optimal paths to predict extinction times in terms of bifurcation parameters for general
networks.
Optimal control may be designed based on minimiziing the action as a function of degree.

Periodic and random vaccination schedules
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Future Directions and Things Not Discussed

How does complex network structure affect route to extinction?
I Topolgy, deterministic time dependent contacts, etc..
I Beyond pairwise approximation
I Non-Markovian assumptions

Extend theory to other networks
I Switching and adaptive networks
I Networks with delays
I Noise...
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Full SIS treatment model (Unconstrained population)

Remove fixed population constrain - N fluctuates

µN S

µS

βSI/N

I

µI

+ ν bgIcκI

W
(
(S, I); (bgIc ,−bgIc)

)
= ν, treatment.
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Finite resources of SIS treatment - Optimal schedule
gν = constant
Decrease in mean time to extinction as the g increases and ν decreases.
Larger fraction treated fewer times per year is most effective.
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Results: average of 10,000 simulations
Master equation theory (solid)
MC simulation (symbols)

Parameters: gν = constant
β = 105 year−1

N = 8000 people

Billings et al PLOS ONE 8 (8), e70211 (2013)
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