Practical Deep Learning in the Classroom Bridge the gap between domain knowledge and Al

Jianghao Wang, Ph.D. jianghaw@mathworks.com

Deep learning is a key technology driving the AI megatrend

Deep learning is part of our everyday lives

Speech Recognition

Face Detection

Automated Driving

Deep learning applications: mainstream vs. engineering

Mainstream

Detecting Objects

Engineering and Science

Identifying Machinery at Shell

Deep Learning Detection

📣 MathWorks

Mikusa Tunnel Japan

Traditional Approach

- Geologists assess seven different metrics
- Can take hours to analyze one site
- Critical shortage of geologists

New Approach

- Use deep learning to automatically recognize metrics based on images
- On-site evaluators decide with support from deep learning

Split into sub-images

Label each sub-image

Done by geologists

Image	Weathering Alteration (1-4)	Fracture Spacing (1-5)	Fracture State (1-5)
	3	3	2
Ch.	4	1	1
	2	3	2
	3	3	2
:	:	:	:

© 2019 The MathWorks, Inc. 9

Transfer learning

AlexNet PRETRAINED MODEL

Teapot

Ice cream

Goose

Custom Network

Weathering alteration: 4

Fracture spacing: 3

Bring human insights into Al

• We are the domain experts

Shortage of data scientists

We need the right knowledge & tools

A typical deep learning course looks like...

Introduction to deep learning

- Historical context, reason of success, etc.
- Theoretical foundations
 - Mathematics basics
 - Neural networks
- Visualization and debugging of neural networks
- Pretrained models, advanced architectures
- Applications

Reference:

- Stanford CS230, 231n
- UMD CMSC 828L
- Dartmouth CS078/178

A typical deep learning course looks like...

Introduction to deep learning

- Historical context, reason of success, etc.
- Theoretical foundations
 - Mathematics basics
 - Neural networks
- Visualization and debugging of neural networks
- Pretrained models, advanced architectures
- Applications

Reference:

- Stanford CS230, 231n
- UMD CMSC 828L
- Dartmouth CS078/178

Introduction to deep learning

Reference: <u>https://beamandrew.github.io/deeplearning/2017/02/23/deep_learning_101_part1.html</u>

A typical deep learning course looks like...

Introduction to deep learning

- Historical context, reason of success, etc.
- Theoretical foundations
 - Mathematics basics
 - Neural networks
- Visualization and debugging of neural networks
- Pretrained models, advanced architectures
- Applications

Reference:

- Stanford CS230, 231n
- UMD CMSC 828L
- Dartmouth CS078/178

Theoretical foundations Understand the architecture

Deep learning is usually implemented using a **neural network architecture** with many **hidden layers**.

Theoretical foundations Stochastic gradient descent

- Standard gradient descent: x_{k+1} = x_k − s_k∇L(x_k)
 <u>– Not successful in deep learning due to large data volume</u>
- Stochastic gradient descent
 - Uses a "minibatch" (B) of the training data at each step
 - Computing ∇l_i by **backpropagation** on *B* samples is much faster
 - Producing weights x^* that generalize on unseen test data
 - Needs to determine a proper step size: <u>learning rate</u> and a good <u>minibatch</u> size

Theoretical foundations Choose the right hyperparameters

A key hyperparameters: learning rate

- Controls how much weights are adjusted with respect to loss
 - Too large: overshoot the minimum, may not converge or even diverge
 - Too low: slow to converge
- Need to be optimized, but can be expensive
 - Manual: trial & error (aka graduate student descent)
 - Automatic: grid search, random, Bayesian, etc
 - Real-world: a combination of both
 - (Educational) Use manual to understand theory
 - (Practical) Then use automatic to speed things up

Theoretical foundations Understand the architecture

Layer

- Building blocks of a neural network
- Many different types:
 - Convolution Layers
 - Sequence Layers
 - Activation layers
 - Pooling Layers
 - Fully Connected Layers
 - ...
- Different combinations are for different purposes

1	0	5	4
3	4	8	3
1	4	6	5
2	5	4	1

Pooling Layer

- Perform a downsampling operation across the spatial dimensions
- Goal: progressively decrease the size of the layers
- Max pooling and average pooling methods
- Popular choice: Max pooling with 2x2 filters, Stride = 2

function B = maxpool(A, filtersize,stridelength)

```
% Get dimension of input matrix
[wA,hA] = size(A);
```

```
% Calculate output matrix dimension
wB = floor((wA - filtersize)/stridelength) + 1;
hB = floor((hA - filtersize)/ stridelength) + 1;
```

```
% Initialize output matrix
B = nan(wB,hB);
```

end

```
% pooling starts
iStart = 1;
for i = 1:wB
    iEnd= iStart + filtersize - 1;
    jStart = 1;
    for j = 1:hB
        jEnd = jStart + filtersize - 1;
```

```
% regions of pooling
subregionA = A(iStart:iEnd, jStart:jEnd);
```

```
% this can be other functions too (e.g., mean)
B(i,j) = max(subregionA(:));
jStart = jStart + stridelength;
end
iStart = iStart + stridelength;
```

1	0	5	4
3	4	8	3
1	4	6	5
2	5	4	1

maxPooling2dLayer.m maxPooling3dLayer.m

Theoretical foundations Design the architecture

- Define layer graph
 - Choose different types of layers
 - Stack layers in the right order

Theoretical foundations Common network architecture

Convolutional Neural Networks (CNN)

Time-Frequency Transformation

Long Short Term Memory (LSTM) Networks

Data cleaning/feature engineering

Theoretical foundations Design the architecture

```
%% Define Network Architecture
% Define the convolutional neural network
architecture.
```

```
layers = [
imageIpputLayer([2])
```

```
imageInputLayer([28 28 1])
```

```
convolution2dLayer(3,16,'Padding',1)
reluLayer
```

```
fullyConnectedLayer(10)
softmaxLayer
classificationLayer];
```


Define custom layers

function [dLdX, dLdAlpha] = backward(layer, X, Z, dLdZ, memory)
% Backward propagate the derivative of the loss function through
% the layer

```
dLdX = layer.Alpha .* dLdZ;
dLdX(X>0) = dLdZ(X>0);
dLdAlpha = min(0,X) .* dLdZ;
dLdAlpha = sum(sum(dLdAlpha,1),2);
```

```
% Sum over all observations in mini-batch
dLdAlpha = sum(dLdAlpha,4);
```


Theoretical foundations Design the architecture

- Define layer graph
 - Choose different types of layers
 - Stack layers in the right order
- Set training options

- Choose solver, mini-batch size, learning rate, training environment...

Set training options

%% Specify Training Options
options = trainingOptions('sgdm',...
'MaxEpochs',3, ...
'ValidationData',valDigitData,...
'ValidationFrequency',30,...
'Verbose',false,...
'Plots','training-progress');

options =

TrainingOptionsSGDM with properties:

Momentum: 0.9000 InitialLearnRate: 0.0100 LearnRateScheduleSettings: [1×1 struct] L2Regularization: 1.0000e-04 GradientThresholdMethod: 'l2norm' GradientThreshold: Inf MaxEpochs: 4 MiniBatchSize: 128 Verbose: 0 VerboseFrequency: 50 ValidationData: [1×1 matlab.io.datastore.ImageDatastore] ValidationFrequency: 30 ValidationPatience: 5 Shuffle: 'once' CheckpointPath: '' ExecutionEnvironment: 'auto' WorkerLoad: [] OutputFcn: [] Plots: 'training-progress' SequenceLength: 'longest' SequencePaddingValue: 0

Theoretical foundations Design the architecture

- Define the layer graph
 - Choose different types of layers
 - Stack layers in the right order
- Set training options
 - Choose solver, mini-batch size, learning rate, training environment...
- Train a neural network

Train a neural network from scratch

```
%% Define Network Architecture
% Define the convolutional neural network
architecture.
layers = [
```

```
imageInputLayer([28 28 1])
```

```
convolution2dLayer(3,16,'Padding',1)
reluLayer
```

```
fullyConnectedLayer(10)
softmaxLayer
classificationLayer];
```

```
%% Specify Training Options
% After defining the network structure, specify
the training options.
options = trainingOptions('sgdm',...
'MaxEpochs',3, ...
'ValidationData',valDigitData,...
'ValidationFrequency',30,...
'Verbose',false,...
'Plots','training-progress');
```

%% Train Network Using Training Data % Train the network using the architecture defined by |layers|, the training data, and the training options.

net = trainNetwork(trainDigitData,layers,options);

A typical deep learning course looks like...

Introduction to deep learning

- Historical context, reason of success, etc.
- Theoretical foundations
 - Mathematics basics
 - Neural networks
- Visualization and debugging of neural networks
- Pretrained models, advanced architectures
- Applications

Reference:

- Stanford CS230, 231n
- UMD CMSC 828L
- Dartmouth CS078/178

Black box

Output Layer

Theoretical foundations Demystify the black box

Layer Activations

Class Activations

DeepDream Images

Layer conv1 Features

Layer conv1 Features

Layer conv2 Features

Layer conv3 Features

Layer conv2 Features

Layer conv3 Features

Layer conv4 Features

Layer fc8 Features

Show features learned in the network

- Visualize activations, deepDreamImage

Monitor training progress

- options = trainingOptions('sgdm', 'Plots', 'training-progress');

📣 MathWorks

A typical deep learning course looks like...

Introduction to deep learning

- Historical context, reason of success, etc.
- Theoretical foundations
 - Mathematics basics
 - Neural networks
- Visualization and debugging of neural networks
- Pretrained models, advanced architectures
- Applications

Reference:

- Stanford CS230, 231n
- UMD CMSC 828L
- Dartmouth CS078/178

Pretrained models

https://www.mathworks.com/help/deeplearning/ug/pretrained-convolutional-neural-networks.html

MATLAB interoperates with other frameworks

Supports ONNX and can exchange models with PyTorch, TensorFlow, and other frameworks.

A typical deep learning course looks like...

Introduction to deep learning

- Historical context, reason of success, etc.
- Theoretical foundations
 - Mathematics basics
 - Neural networks
- Visualization and debugging of neural networks
- Pretrained models, advanced architectures
- Applications

Reference:

- Stanford CS230, 231n
- UMD CMSC 828L
- Dartmouth CS078/178

Deep Learning Used in Many Industries for Many Applications

Shell: Machinery Identification

Genentech: Pathology Analysis

Musashi Seimitsu Industry Co. Detect Abnormalities in Auto Parts

Shell: Satellite Terrain Recognition

AutoLiv: Lidar Object Detection

ultra-low dose CT tung region tra-low dose CT tra

Ritsumeikan University Reduce Exposure in CT Imaging

📣 MathWorks

📣 MathWorks

Deep Learning Workflow

Two Approaches for Deep Learning

1. Train a Deep Neural Network from Scratch

2. Fine-tune a pre-trained model (transfer learning)

Fracture

State

(1-5)

Efficient tunnel drilling with deep learning **Obayashi Corporation**

		Image	Weathering Alteration (1-4)	Fracture Spacing (1-5)
		The second	3	3
		R.	4	1
Split into sub-images Datasets			2	3
	Label each		3	3
	sub-image ───	÷	÷	÷
	PREPROCESS AND TRANSFORM DATA			

Done by geologists

3	3	2
4	1	1
2	3	2
3	3	2
:	÷	:
	© 2019 The	e MathWorks, Inc. 5

What does a successful deep learning course look like?

Mathematics basics

 Key to understanding deep learning

Programming

 Key to solving real-world problems

Applications

Key to advancing fundamental research