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Example 1: Rocket car

x(t)
a = x(0) b = x(T)

• Aim: Move the car from a to b as fast as possible

• x(t) position of the car at time t
• control speed: −1 ≤ z(t) ≤ 1

(z = +1: full spead ahead, z = −1: full braking)
• movement of the car is modelled by differential equation

(state equation):

(SE) mx′′(t) = z(t) in (0, T ), with m : mass of the car
“Minimize T under the constraint that (SE) is fulfilled and |z(t)| ≤ 1”
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Example 2: Potato

• Aim: Cook the potato

• Ω ⊂ R3: domain (potato), Γ = ∂Ω: boundary of the domain
• [0, T ] : time interval
• temperature of the potato at location x at time t → state u(x, t)
• heat source (e.g. hot water, fire) → control z(x, t)
• model heat conduction in potato → heat equation (PDE)
• heat received at boundary → boundary conditions
• assumption: isotropic potato, heat conducting surface
• postulate: model describes the ”real world”
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Example 2: Potato
state equation

(SE)
ut(x, t)−∆xu(x, t) = 0 in Q := (0, T ]×Ω (1)

∂nu(x, t) = α(z(x, t)− u(x, t)) on Σ := (0, T ]× Γ (2)
u(x, 0) = u0(x) in Ω (3)

• (1) describes heat conduction
• (2) models the flux through the surface (boundary condition)
• (3) defines the initial temperature distribution u0(x) (initial condition)
• admissible control : z ∈ Zad := {z ∈ L2(Ω) : a(x, t) ≤ z(x, t) ≤ b(x, t)}

→ control the system with respect to a control goal
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Example 2: Potato
problem formulation

What is our control goal?
(formulated within our mathematical world)

”Achieve” a desired temperature distribution at time T
→ desired state ud(x) ∈ Ω
through heating/scattering over time (0, T ] in a mean square sense:

min
u,z

1
2

∫
Ω

|u(x, T )− ud(x)|2dx︸ ︷︷ ︸
achieve desired state

+ γ

2

∫ T

0

∫
Γ

|z(x, t)|2ds(x) dt︸ ︷︷ ︸
control cost

, (4)

such that (1),(2),(3) are satisfied
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Optimal control problem

control
↓ ↓ ↓

PROCESS ⇒ desired effect

Mathematical formulation:

(P) min
(u,z)∈U×Z

J(u, z) s.t. e(u, z) = 0 and z ∈ Zad

u: state, z: control, J : U × Z → R cost functional
e : U × Z → Y operator, Zad: admissible control set
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Theoretical analysis

• solvability of the state equation (SE)
• weak formulation
• control-state-operator S : z 7→ u(z)

• solvability of the optimal control problem (P)
• existence
• uniqueness
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First order necessary optimality conditions

(P) min
(u,z)

J(u, z) s.t. e(u, z) = 0

• Let Zad = L2(Ω) for simplicity

• → (P ) is an equality constrained optimization problem
• Lagrange functional:

L(u, z; p) = J(u, z) + 〈e(u, z), p〉Y,Y′

• Karush-Kuhn-Tucker (KKT) conditions:
(KKT 1) Lu(ū, z̄; p̄)u = 0 for all u with u(0) = 0
(KKT 2) Lz(ū, z̄; p̄)z = 0 for all z ∈ L2(Ω)
(KKT 3) Lp(ū, z̄; p̄)p = 0 → state equation e(u, z) = 0 !
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First order necessary optimality conditions

• (KKT 1) Lu(ū, z̄; p̄)u = 0 for all u with u(0) = 0

“adjoint equation (AE)”

 −p̄t −∆p̄ = 0 in Q
∂np̄ = −αp̄ on Σ
p̄(T ) = ū(T )− ud in Ω

• (KKT 2) Lz(ū, z̄; p̄)z = 0 for all z ∈ L2(Ω)

equation with z and p γz̄ − p̄ = 0

• (KKT 3) Lp(ū, z̄; p̄)p = 0

“state equation (SE)”

 ūt −∆ū = 0 in Q
∂nū = α(z̄ − ū) on Σ

ū(·, 0) = u0 in Ω
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Second order sufficient optimality conditions

• optimal control problem is a convex problem (i.e. cost functional is convex and constraints
form a convex set)

• first order necessary optimality conditions are sufficient X

• for non-convex problems (e.g. nonlinear (SE)) it is more difficult:
• uniqueness of a solution?
• second order sufficient conditions → second order derivatives ...?
• numerical algorithm (Newton, SQP,...)?
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Numerical realization
Reduced space approach

• Rewrite min J(u, z) s.t. e(u, z) = 0 as min
z∈Z

Ĵ(z)

• It can be shown that ∇Ĵ = γz − p. ← (KKT 2)

• Gradient method:

• Choose an initial control z0

• while (termination criterium is not fulfilled) do
• Compute corresponding state u ← (SE)
• Compute corresponding adjoint state p ← (AE)
• Determine stepsize tk
• Compute update zk+1 = zk − tk · ∇Ĵ(zk)

• end(while)
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Numerical realization
Full space approach

• Full system:

F (ū, z̄; p̄) =

Lu(ū, z̄; p̄)u
Lz(ū, z̄; p̄)z
e(ū, z̄)


• Find (ū, z̄; p̄) such that F (ū, z̄; p̄) = 0
• Newton’s method:

• Choose an initial triple (u0, z0, p0)
• while (termination criterium is not fulfilled) do

• Obtain sk by solving

∂F (uk, zk; pk)sk = −F (uk, zk; pk)

• Determine stepsize tk
• Compute update zk+1 = zk + tksk

• end(while)
Herberg short title January 31, 2022 12



Numerical realization
Challenges

We have to solve (SE) and (AE) repeatedly
→ (time) costly, storage needed

Remedy:
Replace (SE) and (AE) with

• model order reduction techniques (i.e. Proper Orthogonal Decomposition)
• Sketching
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