

Introduction to Optimal Control Problems with Partial Differential Equations (PDEs)

Evelyn Herberg eherberg @gmu.edu

January 31, 2022
PDE & Data Control Seminar
George Mason University

Partially Supported by:

NSF: DMS-2110263 and DMS-1913004

AFOSR: FA9550-19-1-0036

• Aim: Move the car from a to b as fast as possible

- Aim: Move the car from a to b as fast as possible
- x(t) position of the car at time t

Herberg

- Aim: Move the car from a to b as fast as possible
- x(t) position of the car at time t
- control speed: $-1 \le z(t) \le 1$ (z=+1): full spead ahead, z=-1: full braking)

$$\mathbf{a} = \mathbf{x}(\mathbf{0}) \qquad \qquad \mathbf{b} = \mathbf{x}(\mathbf{T})$$

- Aim: Move the car from a to b as fast as possible
- x(t) position of the car at time t
- control speed: $-1 \le z(t) \le 1$ (z=+1): full spead ahead, z=-1: full braking)
- movement of the car is modelled by differential equation (state equation):

(SE)
$$mx''(t) = z(t)$$
 in $(0,T)$, with m : mass of the car

$$\begin{array}{c|c} & & & & \\ \hline & & & \\ \mathbf{a} = \mathbf{x}(\mathbf{0}) & & & \mathbf{b} = \mathbf{x}(\mathbf{T}) \end{array}$$

- Aim: Move the car from a to b as fast as possible
- x(t) position of the car at time t
- control speed: $-1 \le z(t) \le 1$ (z=+1): full spead ahead, z=-1: full braking)
- movement of the car is modelled by differential equation (state equation):

(SE) mx''(t)=z(t) in (0,T), with m: mass of the car "Minimize ${\bf T}$ under the constraint that (SE) is fulfilled and $|z(t)|\leq 1$ "

• Aim: Cook the potato

• Aim: Cook the potato

• $\Omega \subset \mathbb{R}^3$: domain (potato), $\Gamma = \partial \Omega$: boundary of the domain

 $\bullet \ \ [0,T]: {\rm time\ interval}$

- Aim: Cook the potato
- $\Omega \subset \mathbb{R}^3$: domain (potato), $\Gamma = \partial \Omega$: boundary of the domain
- ullet [0,T] : time interval
- temperature of the potato at location x at time t \rightarrow state u(x,t)

- Aim: Cook the potato
- $\Omega \subset \mathbb{R}^3$: domain (potato), $\Gamma = \partial \Omega$: boundary of the domain
- [0,T] : time interval
- temperature of the potato at location x at time t o state u(x,t)
- heat source (e.g. hot water, fire) \rightarrow control z(x,t)

- Aim: Cook the potato
- $\Omega \subset \mathbb{R}^3$: domain (potato), $\Gamma = \partial \Omega$: boundary of the domain
- [0,T] : time interval
- lacksquare temperature of the potato at location ${\sf x}$ at time ${\sf t} o {\sf state} \; u(x,t)$
- heat source (e.g. hot water, fire) \rightarrow control z(x,t)
- model heat conduction in potato → heat equation (PDE)

- Aim: Cook the potato
- $\Omega \subset \mathbb{R}^3$: domain (potato), $\Gamma = \partial \Omega$: boundary of the domain
- [0,T]: time interval
- lacksquare temperature of the potato at location ${\sf x}$ at time ${\sf t} o {\sf state} \; u(x,t)$
- heat source (e.g. hot water, fire) \rightarrow control z(x,t)
- model heat conduction in potato → heat equation (PDE)
- ullet heat received at boundary o boundary conditions

- Aim: Cook the potato
- $\Omega \subset \mathbb{R}^3$: domain (potato), $\Gamma = \partial \Omega$: boundary of the domain
- [0,T]: time interval
- temperature of the potato at location x at time t \rightarrow state u(x,t)
- heat source (e.g. hot water, fire) \rightarrow control z(x,t)
- model heat conduction in potato → heat equation (PDE)
- heat received at boundary → boundary conditions
- assumption: isotropic potato, heat conducting surface

- Aim: Cook the potato
- $\Omega \subset \mathbb{R}^3$: domain (potato), $\Gamma = \partial \Omega$: boundary of the domain
- [0,T] : time interval
- temperature of the potato at location x at time t \rightarrow state u(x,t)
- heat source (e.g. hot water, fire) \rightarrow control z(x,t)
- model heat conduction in potato → heat equation (PDE)
- heat received at boundary → boundary conditions
- assumption: isotropic potato, heat conducting surface
- postulate: model describes the "real world"

(SE)

$$u_t(x,t) - \Delta_x u(x,t) = 0 \qquad \text{in } Q := (0,T] \times \Omega$$

$$\partial_n u(x,t) = \alpha(z(x,t) - u(x,t)) \quad \text{on } \Sigma := (0,T] \times \Gamma$$

$$u(x,0) = u_0(x) \qquad \text{in } \Omega$$

$$(1)$$

$$(2)$$

$$(3)$$

$$u_t(x,t) - \Delta_x u(x,t) = 0 \qquad \text{in } Q := (0,T] \times \Omega$$
 (1) (SE)
$$\partial_n u(x,t) = \alpha(z(x,t) - u(x,t)) \quad \text{on } \Sigma := (0,T] \times \Gamma$$
 (2)

in Ω

- (1) describes heat conduction
- (2) models the flux through the surface (boundary condition)
- (3) defines the initial temperature distribution $u_0(x)$ (initial condition)

 $u(x,0) = u_0(x)$

(3)

$$u_t(x,t) - \Delta_x u(x,t) = 0 \qquad \text{in } Q := (0,T] \times \Omega$$

$$(SE) \qquad \qquad \partial_n u(x,t) = \alpha(z(x,t) - u(x,t)) \quad \text{on } \Sigma := (0,T] \times \Gamma$$

$$(2)$$

in Ω

- (1) describes heat conduction
- (2) models the flux through the surface (boundary condition)
- (3) defines the initial temperature distribution $u_0(x)$ (initial condition)

 $u(x,0) = u_0(x)$

• admissible control : $z \in \mathcal{Z}_{ad} := \{z \in L^2(\Omega) : a(x,t) \leq z(x,t) \leq b(x,t)\}$

(3)

$$u_t(x,t) - \Delta_x u(x,t) = 0 \qquad \text{in } Q := (0,T] \times \Omega$$

$$\partial_n u(x,t) = \alpha(z(x,t) - u(x,t)) \quad \text{on } \Sigma := (0,T] \times \Gamma$$
(2)

in Ω

- (1) describes heat conduction
- (2) models the flux through the surface (boundary condition)
- (3) defines the initial temperature distribution $u_0(x)$ (initial condition)

 $u(x,0) = u_0(x)$

- admissible control : $z \in \mathcal{Z}_{\mathrm{ad}} := \{z \in L^2(\Omega) : a(x,t) \leq z(x,t) \leq b(x,t)\}$
- \rightarrow control the system with respect to a **control goal**

(3)

problem formulation

What is our control goal?

(formulated within our mathematical world)

problem formulation

What is our control goal?

(formulated within our mathematical world)

"Achieve" a desired temperature distribution at time T

 \rightarrow desired state $u_d(x) \in \Omega$

through heating/scattering over time (0,T] in a mean square sense:

What is our control goal?

(formulated within our mathematical world)

"Achieve" a desired temperature distribution at time T

 \rightarrow desired state $u_d(x) \in \Omega$

through heating/scattering over time $\left(0,T\right]$ in a mean square sense:

$$\min_{u,z} \underbrace{\frac{1}{2} \int_{\Omega} |u(x,T) - u_d(x)|^2 dx}_{\text{achieve desired state}} + \underbrace{\frac{\gamma}{2} \int_{0}^{T} \int_{\Gamma} |z(x,t)|^2 ds(x) dt}_{\text{control cost}}, \tag{4}$$

What is our control goal?

(formulated within our mathematical world)

"Achieve" a desired temperature distribution at time T

 \rightarrow desired state $u_d(x) \in \Omega$

through heating/scattering over time (0,T] in a mean square sense:

$$\min_{u,z} \underbrace{\frac{1}{2} \int_{\Omega} |u(x,T) - u_d(x)|^2 dx}_{\text{achieve desired state}} + \underbrace{\frac{\gamma}{2} \int_{0}^{T} \int_{\Gamma} |z(x,t)|^2 ds(x) dt}_{\text{control cost}}, \tag{4}$$

such that (1),(2),(3) are satisfied

Optimal control problem

Optimal control problem

$$\begin{array}{c} \text{control} \\ \downarrow \downarrow \downarrow \downarrow \\ \hline \textbf{PROCESS} \quad \Rightarrow \quad \text{desired effect} \end{array}$$

Mathematical formulation:

(P)
$$\min_{(u,z)\in\mathcal{U} imes\mathcal{Z}}J(u,z)$$
 s.t. $e(u,z)=0$ and $z\in\mathcal{Z}_{\mathrm{ad}}$

 $\begin{array}{ll} \textit{u: state, z: control,} & \textit{$J:\mathcal{U}\times\mathcal{Z}\to\mathbb{R}$ cost functional} \\ e:\mathcal{U}\times\mathcal{Z}\to\mathcal{Y} \text{ operator,} & \mathcal{Z}_{\mathrm{ad}}\text{: admissible control set} \end{array}$

$$(\mathsf{P}) \qquad \boxed{ \min_{(u,z) \in \, \mathcal{U} \times \mathcal{Z}} J(u,z) \quad \mathsf{s.t.} \quad e(u,z) = 0 \quad \mathsf{and} \quad z \in \mathcal{Z}_{\mathrm{ad}} }$$

(P)
$$\min_{(u,z)\in\mathcal{U} imes\mathcal{Z}}J(u,z)$$
 s.t. $e(u,z)=0$ and $z\in\mathcal{Z}_{\mathrm{ad}}$

$$J(u,z) := \frac{1}{2} \int_{\Omega} |u(x,T) - u_d(x)|^2 dx \, dt + \frac{\gamma}{2} \int_0^T \int_{\Gamma} |z(x,t)|^2 ds(x) \, dt$$

$$\text{(P)} \qquad \min_{(u,z) \in \, \mathcal{U} \times \mathcal{Z}} J(u,z) \quad \text{s.t.} \quad e(u,z) = 0 \quad \text{and} \quad z \in \mathcal{Z}_{\mathrm{ad}}$$

$$J(u,z) := \frac{1}{2} \int_{\Omega} |u(x,T) - u_d(x)|^2 dx \, dt + \frac{\gamma}{2} \int_0^T \int_{\Gamma} |z(x,t)|^2 ds(x) \, dt$$

$$u_t(x,t)-\Delta_x u(x,t)=0 \qquad \text{in }Q$$

$$\partial_n u(x,t)=\alpha(z(x,t)-u(x,t)) \quad \text{on } \Sigma$$

$$u(x,0)=u_0(x) \qquad \text{in }\Omega$$

(P)
$$\min_{(u,z)\in\mathcal{U} imes\mathcal{Z}}J(u,z)$$
 s.t. $e(u,z)=0$ and $z\in\mathcal{Z}_{\mathrm{ad}}$

$$J(u,z) := \frac{1}{2} \int_{\Omega} |u(x,T) - u_d(x)|^2 dx \, dt + \frac{\gamma}{2} \int_0^T \int_{\Gamma} |z(x,t)|^2 ds(x) \, dt$$

$$u_t(x,t)-\Delta_x u(x,t)=0 \qquad \text{in } Q$$

$$\partial_n u(x,t)=\alpha(z(x,t)-u(x,t)) \quad \text{on } \Sigma$$

$$u(x,0)=u_0(x) \qquad \text{in } \Omega$$

$$\mathcal{Z}_{\mathrm{ad}} := \{ z \in L^2(\Omega) : a(x,t) \le z(x,t) \le b(x,t) \}$$

Herberg

Theoretical analysis

- solvability of the state equation (SE)
 - weak formulation
 - lacksquare control-state-operator $\mathcal{S}: z \mapsto u(z)$

Theoretical analysis

- solvability of the state equation (SE)
 - weak formulation
 - control-state-operator $\mathcal{S}: z \mapsto u(z)$
- solvability of the optimal control problem (P)
 - existence
 - uniqueness

• Let $\mathcal{Z}_{\mathrm{ad}} = L^2(\varOmega)$ for simplicity

- Let $\mathcal{Z}_{\mathrm{ad}} = L^2(\Omega)$ for simplicity
- ullet \to (P) is an equality constrained optimization problem

(P)
$$\overline{\min_{(u,z)} J(u,z)} \quad \text{s.t.} \quad e(u,z) = 0$$

- Let $\mathcal{Z}_{\mathrm{ad}} = L^2(\varOmega)$ for simplicity
- ullet o (P) is an equality constrained optimization problem
- Lagrange functional:

$$\mathcal{L}(u,z;p) = J(u,z) + \langle e(u,z), p \rangle_{\mathcal{Y},\mathcal{Y}'}$$

(P)
$$\overline{\min_{(u,z)} J(u,z)} \quad \text{s.t.} \quad e(u,z) = 0$$

- Let $\mathcal{Z}_{\mathrm{ad}} = L^2(\Omega)$ for simplicity
- ullet o (P) is an equality constrained optimization problem
- Lagrange functional:

$$\mathcal{L}(u,z;p) = J(u,z) + \langle e(u,z), p \rangle_{\mathcal{Y},\mathcal{Y}'}$$

Karush-Kuhn-Tucker (KKT) conditions:

$$\begin{array}{lll} \mbox{(KKT 1)} & \mathcal{L}_u(\bar{u},\bar{z};\bar{p})u=0 & \mbox{for all } u \mbox{ with } u(0)=0 \\ \mbox{(KKT 2)} & \mathcal{L}_z(\bar{u},\bar{z};\bar{p})z=0 & \mbox{for all } z\in L^2(\Omega) \\ \mbox{(KKT 3)} & \mathcal{L}_p(\bar{u},\bar{z};\bar{p})p=0 & \rightarrow \mbox{ state equation } e(u,z)=0 \ ! \end{array}$$

• (KKT 1) $\mathcal{L}_u(\bar{u},\bar{z};\bar{p})u=0$ for all u with u(0)=0

$$\mbox{"adjoint equation (AE)"} \left\{ \begin{array}{rcl} -\bar{p}_t - \Delta \bar{p} & = & 0 & \text{in } Q \\ \partial_n \bar{p} & = & -\alpha \bar{p} & \text{on } \Sigma \\ \bar{p}(T) & = & \bar{u}(T) - u_d & \text{in } \Omega \end{array} \right.$$

- (KKT 2) $\mathcal{L}_z(\bar{u},\bar{z};\bar{p})z=0$ for all $z\in L^2(\Omega)$ equation with z and p $\gamma\bar{z}-\bar{p}=0$
- **(KKT 3)** $\mathcal{L}_{p}(\bar{u}, \bar{z}; \bar{p})p = 0$

$$\text{"state equation (SE)"} \; \left\{ \begin{array}{rcl} \bar{u}_t - \Delta \bar{u} & = & 0 & \text{in } Q \\ \partial_n \bar{u} & = & \alpha(\bar{z} - \bar{u}) & \text{on } \Sigma \\ \bar{u}(\cdot, 0) & = & u_0 & \text{in } \Omega \end{array} \right.$$

Second order sufficient optimality conditions

- optimal control problem is a convex problem (i.e. cost functional is convex and constraints form a convex set)
- first order necessary optimality conditions are sufficient √
- for non-convex problems (e.g. nonlinear (SE)) it is more difficult:
 - uniqueness of a solution?
 - second order sufficient conditions \rightarrow second order derivatives ...?
 - numerical algorithm (Newton, SQP,...)?

Reduced space approach

Rewrite

$$\min J(u,z) \text{ s.t. } e(u,z) = 0$$

as

$$\min_{z \in \mathcal{Z}} \hat{J}(z)$$

• It can be shown that $\nabla \hat{J} = \gamma z - p$. \leftarrow (KKT 2)

Numerical realization

Reduced space approach

$$\min J(u,z) \text{ s.t. } e(u,z) = 0$$

as

$$\min_{z \in \mathcal{Z}} \hat{J}(z)$$

- It can be shown that $\nabla \hat{J} = \gamma z p$. \leftarrow (KKT 2)
- Gradient method:
 - Choose an initial control z^0
 - while (termination criterium is not fulfilled) do
 - Compute corresponding state $u \leftarrow (SE)$
 - Compute corresponding adjoint state $p \leftarrow (AE)$
 - Determine stepsize t^k
 - Compute update $z^{k+1} = z^k t^k \cdot \nabla \hat{J}(z^k)$
 - end(while)

Full system:

$$F(\bar{u}, \bar{z}; \bar{p}) = \begin{pmatrix} \mathcal{L}_u(\bar{u}, \bar{z}; \bar{p})u \\ \mathcal{L}_z(\bar{u}, \bar{z}; \bar{p})z \\ e(\bar{u}, \bar{z}) \end{pmatrix}$$

- Find $(\bar{u}, \bar{z}; \bar{p})$ such that $F(\bar{u}, \bar{z}; \bar{p}) = 0$
- Newton's method:
 - Choose an initial triple (u^0, z^0, p^0)
 - while (termination criterium is not fulfilled) do
 - Obtain s^k by solving

$$\partial F(u^k, z^k; p^k) s^k = -F(u^k, z^k; p^k)$$

- Determine stepsize t^k
- Compute update $z^{k+1} = z^k + t^k s^k$
- end(while)

Numerical realization

Challenges

We have to solve (SE) and (AE) repeatedly

ightarrow (time) costly, storage needed

We have to solve (SE) and (AE) repeatedly

ightarrow (time) costly, storage needed

Remedy:

Replace (SE) and (AE) with

- model order reduction techniques (i.e. Proper Orthogonal Decomposition)
- Sketching

Literature

- Optimal Control of Partial Differential Equations: Theory, Methods and Applications, F. Tröltzsch, AMS 2010
- Optimization with PDE Constraints, M. Hinze, R. Pinnau, M. Ulbrich, S. Ulbrich, Springer 2008

14